Course Instructor

Marie-Josée Fortin (Phone: 416-946-7886; email: mariejosee.fortin@utoronto.ca)

Location and Time

Lecture: Tuesdays from 10:00 (sharp) to 11:30 via Zoom link

Course Description

Biologists need to use statistical methods to test their hypotheses. Given the increasing complexity of experiments carried out by biologists, they need however to understand the limitations of these statistics and how to select the appropriate statistics for their needs and how to interpret them properly both statistically and biologically. The goal of this advanced course in statistics is to teach biologists how to choose and use statistics so that they can address relevant biological questions and test them with the appropriate methods. Specifically, an overview of advanced notions about regression analysis and ANOVA will be presented. The course is lecture-based with assignments designed to develop awareness about the misuse of statistics.

Course Objectives

By the end of the course, graduate students should be able to:

- understand the utility and pitfalls of statistics and their appropriate application to biological problems;
- analyse their data with the appropriate statistics and interpret the results adequately;
- read, understand, and critically evaluate paper and their use of statistics.

Topics and Timetable

Date 2019	TOPICS	LAB
Sept 15-Wk1	• Review of the various types of statistical approaches:	Homework DUE at Sept 24:
	parametric, non-parametric, Bayesian, randomization tests	Your questions/objectives and
	• Causality 101	potential data
	• Experimental design, Power analysis, Effect size	
Sept 22-Wk2	• <i>Chi</i> -Square-test, <i>G</i> -test	Homework DUE
	Correlation, partial correlation	
Sept 29-Wk3	Linear regression and Residual analysis	Lab 1: Regression
	Multiple regression	
	Model selection criteria	
Oct 6-Wk4	Causality 201-Path Analysis	Lab 1 DUE
	• Generalized Linear Models (GLM)	
	• Generalized Linear Mixed Models (GLMM)	
Oct 13-Wk5	Non-linear regression, Smoothing	Lab 2: Regression tree
	Generalized Additive Models (GAM)	
	Regression Tree Methods; Clustering	
Oct 20-Wk6	ANOVA	Lab 3: ANOVA
	Nested ANOVA	
	Factorial ANOVA/Multiple comparison tests	
Oct 27-Wk7	ANCOVA	Lab 3 DUE
	• Split-plot models	
	Repeated measures	
	MANOVA	
Nov 3-Wk8	Meta-analysis	Lab 2 DUE
	Survival analysis	
	Multivariate/Ordination methods	
Nov 17-Wk9	• Student presentations (10 minutes MAX)	Term-paper DUE

1. Lab 1: regression methods (10%)

 \rightarrow Do not want printout of the figures BUT the statistical and biological interpretations of the results obtained.

2. Lab 2: regression trees (10%)

 \rightarrow Do not want printout of the figures BUT the statistical and biological interpretations of the results obtained.

3. Lab 3: ANOVA (10%)

 \rightarrow Do not want printout of the figures BUT the statistical and biological interpretations of the results obtained.

4. Term project = Report (50%): Write the "methods section" of your potential data analysis explaining which statistics you should use to answer your hypotheses/objectives: Compare at least two different statistical methods stressing the assumptions of each selected statistical methods as well as their pros and their cons from a statistical/methodological perspective and from an ecological/evolutionary/biological perspective.

• Maximum 6 pages **single-interlined** (half-page presenting the objectives of the study; half-page presenting the data; 4 pages explaining and comparing the statistical methods; 1 page for the references)

5. Term project = Presentation (20%): Each student will present a 10-minute talk summarizing: The objective(s) of their project; The (potential) data to be analysed; The selected methods that should be used to assess/test your hypotheses.

Useful References

→ Gotelli NJ, AM Ellison. 2012. A Primer of Ecological Statistics. 2nd edition. Sinauer.

→ Whitlock M, D Schluter. 2015. Analysis of Biological Data. 2nd ed. Roberts and Company Publishers.

→ van Emden HF. 2008. *Statistics for Terrified Biologists*. Wiley-Blackwell.

Zuur *et al.* 2009. *Mixed Effects Models and Extensions in Ecology with R*. Springer. Aho KA. 2016. *Foundational and Applied Statistics for Biologists using R*. Chapman and Hall/CRC. McDonald JH. 2014. *Handbook of Biological Statistics*. 3rd ed. Baltimore, MD. [pdf free online]

Qian SS. 201x. Environmental and Ecological Statistics with R.

Brimacombe M. 2018. Likelihood Methods in Biology and Ecology: A Modern Approach to Statistics. Scott Pardo, Michael Pardo. 201x. Statistical Methods for Field and Laboratory Studies in Behavioral Ecology

Academic integrity

Academic integrity is fundamental to learning and scholarship at the University of Toronto. Participating honestly, respectfully, responsibly, and fairly in this academic community ensures that the U of T degree that you earn will be valued as a true indication of your individual academic achievement, and will continue to receive the respect and recognition it deserves.

Familiarize yourself with the University of Toronto's *Code of Behaviour on Academic Matters*(<u>http://www.governingcouncil.utoronto.ca/policies/behaveac.htm</u>). It is the rule book for academic behaviour at the U of T, and you are expected to know the rules.