Course Instructor
Marie-Josée Fortin (Phone: 416-946-7886; email: mariejosee.fortin@utoronto.ca)

Location and Time
Lecture: Tuesday from 10:00 (sharp) to 12:00

Course Description
Biologists need to use statistical methods to test their hypotheses. Given the increasing complexity of experiments carried out by biologists, they need however to understand the limitations of these statistics and how to select the appropriate statistics for their needs, and how to interpret them properly both statistically and biologically. The goal of this advanced course in statistics is to teach biologists how to choose and use statistics so that they can address relevant biological questions and test them with the appropriate methods. Specifically, an overview of advanced notions about regression analysis and ANOVA will be presented. The course is lecture-based with assignments designed to develop awareness about the misuse of statistics.

Course Objectives
By the end of the course, graduate students should be able to:
• understand the utility and pitfalls of statistics and their appropriate application to biological problems;
• analyse their data with the appropriate statistics and interpret the results adequately;
• read, understand, and critically evaluate papers and their use of statistics.

Topics and Timetable

<table>
<thead>
<tr>
<th>Date 2019</th>
<th>TOPICS</th>
<th>LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept 13-Wk1</td>
<td>Review of the various types of statistical approaches: parametric, non-parametric, Bayesian, randomization tests Causality 101 Experimental design, Power analysis, Effect size</td>
<td>Homework DUE on Sept 28: Your questions/objectives and potential data</td>
</tr>
<tr>
<td>Sept 20-Wk2</td>
<td>Chi-Square-test, G-test Correlation, partial correlation</td>
<td>Homework DUE</td>
</tr>
<tr>
<td>Sept 24-Wk3</td>
<td>Linear regression and Residual analysis Multiple regression Model selection criteria</td>
<td>Lab 1: Regression</td>
</tr>
<tr>
<td>Oct 4-Wk4</td>
<td>Causality 201-Path Analysis Generalized Linear Models (GLM) Generalized Linear Mixed Models (GLMM)</td>
<td></td>
</tr>
<tr>
<td>Oct 11-Wk5</td>
<td>Non-linear regression, Smoothing Generalized Additive Models (GAM) Regression Tree Methods; Clustering</td>
<td>Lab 1 DUE</td>
</tr>
<tr>
<td>Oct 18-Wk6</td>
<td>ANOVA Nested ANOVA Factorial ANOVA/Multiple comparison tests</td>
<td>Lab 2: ANOVA</td>
</tr>
<tr>
<td>Oct 25-Wk7</td>
<td>ANCOVA Split-plot models/Repeated measures MANOVA</td>
<td></td>
</tr>
<tr>
<td>Nov 1-Wk8</td>
<td>Meta-analysis/Survival analysis Multivariate/Ordination methods Student presentations (10 minutes MAX)</td>
<td>Lab 2 DUE</td>
</tr>
<tr>
<td>Wk9</td>
<td>Student presentations (10 minutes MAX)</td>
<td>Term-paper DUE</td>
</tr>
</tbody>
</table>
Evaluation

1. Lab 1: Regression methods (15%)
 → Do not want a printout of the figures BUT the statistical and biological interpretations of the results obtained.

2. Lab 2: ANOVA (15%)
 → Do not want a printout of the figures BUT the statistical and biological interpretations of the results obtained.

3. Term project = Report (50%): Write the “methods section” of your potential data analysis explaining which statistics you should use to answer your hypotheses/objectives: Compare at least two different statistical methods stressing the assumptions of each selected statistical methods as well as their pros and their cons from a statistical/methodological perspective and from an ecological/evolutionary/biological perspective.
 - Maximum 6 pages single-interlined (half-page presenting the objectives of the study; half-page presenting the data; 4 pages explaining and comparing the statistical methods; 1 page for the references)

4. Term project = Presentation (20%): Each student will present a 10-minute talk summarizing: The objective(s) of their project; The (potential) data to be analyzed; The selected methods that should be used to assess/test your hypotheses.

Useful References

Academic integrity

Academic integrity is fundamental to learning and scholarship at the University of Toronto. Participating honestly, respectfully, responsibly, and fairly in this academic community ensures that the U of T degree that you earn will be valued as a true indication of your individual academic achievement, and will continue to receive the respect and recognition it deserves.
Familiarize yourself with the University of Toronto’s *Code of Behaviour on Academic Matters* (http://www.governingcouncil.utoronto.ca/policies/behaveac.htm). It is the rule book for academic behaviour at the U of T, and you are expected to know the rules.