Skip to content

Graduate Courses

EEB offers a variety of courses in ecology & evolution across our three campuses.

Graduate students may also supplement their studies in EEB with courses offered by other departments, such as Cell & Systems Biology, Statistics, Environmental Sciences, Health Sciences, and more.

Winter Break Extended:

  • Winter session begins: Monday, January 11, 2021
  • Reading Week: February 15-19, 2021
  • Winter session ends: Friday, April 9, 2021

How to Enrol

Log into ACORN to view, add, and drop courses, or to update personal info (phone number, address, SIN).

Course registration timelines:
Fall or full year courses = Sept 20, 2021 (tentative)
Winter courses = January 15, 2022
* check course descriptions for timing & start date*

Regular Course Offerings

Many EEB graduate courses are offered annually. Others are offered every 2-3 years, or when there is sufficient demand.

Check the EEB Graduate Handbook for coursework requirements. Also discuss options with your supervisor(s) and fellow students.

Note: For some courses, you may enrol, but will not be officially registered until permission has been granted by the course instructor.

EEB1230H: Multivariate StatisticsNext Offered: Winter 2021

Instructor(s): D. Jackson

Course Description: This course is open to PhD students in their second year or later. Students will develop a research project during the course and require an appropriate dataset that they will analyse as part of their course work; ideally the dataset will be thesis-related. Enrolment is by permission of the instructor.

Please email the following information to Don Jackson by Nov 15.  Use the subject heading of “EEB1230 Multivariate Statistics” and include the following:

  • Name, Department & Supervisor(s), Program and Year of study.
  • Brief description of what your interests in multivariate issues may be (e.g. type of questions and data)
  • Background regarding multivariate methods – have you used them?; which methods?; have you had a previous course teaching multivariate statistics?

Location: St. George
Date & Time: Mondays 9:00am-12:00pm

EEB1310H: Philosophy & MethodsNext Offered: Fall 2021

Instructor(s): H. Rodd, N. Rollinson, guest lecturers

Course Description: This course is recommended for students just starting an MSc or PhD, and for students in the second year of their PhD who have begun to nail down a thesis topic. This course will involve a combination of: (1) student-led discussions; (2) lectures designed to cover general and sometimes controversial scientific issues; and (3) short presentations by students introducing the background and context for their proposed research. The major assignment for the course is an essay that requires students to discuss their thesis research within the broader context (historical and contemporary) of their general research field.

The class will read about and discuss topics that include:

  • human biases and their roles in science
  • controversies about approaches to science and research tactics
  • common errors in experimental design and statistical analysis (note: some background in statistics is useful, but not required)
  • brief overviews of some novel statistical approaches
  • ethics, science communication, publishing, and other issues that are important to researchers

Location: St. George

EEB1320H: Core Ecology CourseNext Offered: Winter 2021

Instructor(s): M. Krkosek, B. Gilbert

Course Description: The Core Ecology course will provide students with a foundation of the conceptual basis of ecology through lectures, readings, and discussions. The structure of course content will follow the four levels of ecological organization: (1) individuals, (2) populations, (3) communities, and (4) ecosystems. By exploring the theoretical foundations of ecology and the linkages among ecological theories, students will gain a broad perspective of the historical development and current trends in ecology, particularly at the population and community levels. This course should be useful preparation for PhD students for the Question Bank part of the Appraisal Exam.

Location: St. George
Date & Time: Wednesdays 2:00pm-5:00pm

EEB1350H: Core Evolution CourseNext Offered: 2021–2022

Instructors: A. Agrawal, S. Wright

Course Description:  The Core Evolution Course will cover the basics of evolution.  This course should be useful preparation for PhD students for the Question Bank part of the Appraisal Exam.  If you have taken two or more 3rd or 4th year undergrad courses in evolution, the course may not be especially useful for providing you with background knowledge—discuss with your supervisor and supervisory committee whether you should take this course.  On the other hand, if you have no or very little background in the field, you may need to sit in on undergrad lectures or do outside reading before you take this course; however, if you have taken other courses in ecology, math, or biological theory, ask the EEB graduate office and your supervisor and committee whether you will be equipped to take one of these courses.

Location: St. George

Short Courses & Modules

EEB offers a number of short, quarter-credit (0.25 FCE) courses in specialized topics, run over a partial semester.

EEB1210H: Advanced StatisticsNext Offered: Fall 2021

Instructor(s): M.J. Fortin

Course Description: Biologists need to use statistical methods to test their hypotheses. Given the increasing complexity of experiments carried out by biologists, they need however to understand the limitations of these statistics, how to select the appropriate statistics for their needs, and how to interpret them properly—both statistically and biologically. The goal of this advanced course in statistics is to teach biologists how to choose and use statistics, so that they can address relevant biological questions and test them with the appropriate methods. Specifically, an overview of advanced notions about regression analysis and ANOVA will be presented. The course is lecture-based with assignments designed to develop awareness about the misuse of statistics.

Location: St. George
Course Syllabus

EEB1235H: Modular Topics in Quantitative AnalysisNext Offered: TBA

Instructor(s): TBA

Course Description: TBA

Location: TBA

EEB1250H: Spatial StatisticsNext Offered: Winter 2021

Instructor(s): M. J. Fortin

Course Description: Ecological processes are inherently spatially structured due to spatial dependence on environmental conditions and spatial autocorrelation of species behaviours. The goal of this course is to provide a broad overview of the various spatial analytical methods available to quantify (geostatistics, network theory, boundary detection), test (restricted randomization) and model (spatial regressions) spatially autocorrelated ecological data. Students will be introduced to concepts of spatial scales and how multiscale analysis can be performed with census and sampled data. Furthermore, specific spatial methods to deal with point pattern data and surface pattern data will be reviewed. A combination of lectures and computer laboratory sessions will be used.

Location: St. George Course Syllabus
Date & Time: Thursdays (sharp) 10:00am-12:00pm

Introduction to Bioinformatics & Genomics for Evolutionary BiologistsNext Offered: TBA

Instructor(s): R. Ness

Course Description: This course will introduce students with typical EEB backgrounds to concepts and practices in computational analysis with a special focus on DNA/RNA/Protein sequence data and genomics. The course consists of 12 interactive labs that combine text instructions, with live coding examples and challenging exercises. Students will be guided through a thorough introduction to the programming language Python, with emphasis on techniques and concepts most important to biological research. The last four labs also include a brief introduction to the bash command line environment as well as numerous command line bioinformatic packages. These packages are core tools in modern analysis of high throughput sequence data. Examples include, Trimmomatic, samtools, BWA, GATK HaplotypeCaller, SPADES de novo, bowtie, cufflinks etc. No prior knowledge of programming is required but students should have a firm grasp of basic genetic concepts such as DNA replication, inheritance and protein synthesis. Each of the 12 labs contains 5-10 questions which will be submitted and graded weekly.  The course is largely self-directed via working through the lab. The course will meet weekly to facilitate peer-to-peer collaborative problem solving and so students can receive guidance from the instructor or TA.

Location: St George

Special Topics

Special Topics courses are developed on an ad hoc basis to cover current issues or to meet growing demand among graduate students. Students who identify such demand are encouraged to approach department faculty with suggestions for future special topics courses.

EEB1456: Evo-Eco Module V: Phylogenetic Comparative MethodsNext Offered: Winter 2021

Instructor(s): L. Mahler

Course Description: 6-week module, in the second half of the Winter term; there will be a 3-hour session each week; course weight: 0.25. Draft syllabus.

Location: St. George
Date & Time: Wednesdays 9am-12pm, March 3 – April 7, 2021

EEB1456: Bias in STEM: History, Data and ProgressNext Offered: Summer 2021

Instructor(s): M. Andrade, N. Mideo

Course Description: 6-7 week module, in the first half of the Summer term; course weight: 0.25.

In this course we will discuss the historical legacy of bias and exclusion in science, recent data that quantifies the scale of the problems and/or the science behind them, and finally evidence-based strategies to overcome these issues. This course is inspired by, and modified from, a course designed by Prof. Corrie Moreau at Cornell (read about it here).

Location: St. George
Date & Time: tbd

EEB1450H: Landscape GeneticsNext Offered: Winter 2022

Instructor(s): H.Wagner, M.J. Fortin

Course Description:
Interdisciplinary overview of the field of landscape genetics, catering to students in basic and applied ecology, conservation and population genetics, landscape ecology, evolutionary biology and conservation biology. A key objective of landscape genetics is to study how landscape modification and habitat fragmentation affect organism dispersal and gene flow across the landscape. Landscape genetics requires highly interdisciplinary specialized skills, making intensive use of technical population genetic skills and spatial analysis tools (spatial statistics, GIS tools and remote sensing).

Location: St. George
Date & Time: tbd

Examples of Past Course Topics

Classic Papers in Ecology & Evolution

Seminar-style course where students read and discuss influential papers in the history of Ecology & Evolutionary Biology.

Applied Aquatic Ecology

A seminar-style course with student-led discussions. Introductory focus on basic aquatic ecology, followed by deep dives into how scientific studies have challenged and/or enhanced our understanding of how climate change, fisheries, and pollutants have impacted aquatic ecosystems.

Integrative Biology of Behaviour

Course focuses on behaviour genetics, genomics and neurobiology, taught by faculty from EEB and Cell & Systems Biology.

Introduction to Statistical Learning

Statistical learning is set of tools for exploring complex datasets. The analysis of big data blends developments in statistics and computer science using methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines. The course concentrates on the explanation and applications of statistical learning using practical, hands-on code demonstrations and exercises in the R programming language.

Introduction to Bayesian Analysis in Ecology & Evolution

Bayesian statistics are more and more used to fit statistical models in ecology and evolution. In this course, the graduate students will be working through the book Statistical Rethinking 2nd Edition by Richard McElreath. The book concentrates on the explanation and applications of Bayesian statistics using practical, hands-on code demonstrations and exercises in the R programming language and/or STAN. Students will be required to attend weekly meetings where we will collaboratively cover select chapters (mostly those presenting how to perform regressions—mixed models, etc.). Each meeting will be lead and presented by one or more students presenting the major concepts and challenges arising from the R exercises.

Population genomics of rapid adaptation

There is growing recognition of the widespread importance of rapid adaptation for both ecological and evolutionary processes. Rapid adaptation can have major impacts on the ecology and evolution of species, and it also lies at the intersection of basic and applied questions in EEB (e.g. evolution of drug and herbicide  resistance, adaptation to pollution and climate change). The ability to sequence large numbers of genomes and track evolutionary changes in real time is allowing for exciting opportunities to gain major new insights into rapid adaptation. This course will take the form of a working group, where we will discuss, explore and synthesize the progress, prospects and pitfalls of utilizing evolutionary genomic approaches to better understand the causes and consequences of rapid adaptation. We will draw from everyone’s expertise and interest to develop a synthesis and roadmap for the field. 

Joint Undergrad-Grad Courses

A number of advanced upper-year undergraduate courses can be taken by graduate students. Be aware that the graduate versions of these courses have unique course codes, and required coursework will differ from undergraduate course.

EEB1328H: Physiological EcologyNext Offered: Fall 2020

Instructor(s): R. Sage

Course Description: An advanced treatment of the physiological mechanisms controlling plant and animal distribution and ecological success. Topics of focus include photosynthesis and resource balance, water and nutrient relations, temperature effects, and adaptations to abiotic stress. A fee of approximately $15 may be charged for field trip transportation. 

Location: St. George

EEB1340H: Comparative Plant MorphologyNext Offered: Winter 2021

Instructor(s): T. Sage

Course Description: The origin of land plants and the subsequent diversification of land plant vegetative and reproductive form and function. Discussions synthesize morphological and anatomical knowledge from living organisms and fossil records with cellular, physiological, and molecular information on the developmental “tool kit” of land plants and their ancestors throughout geological time. Topics address the evolution of vegetative and reproductive meristems; stem, leaf, and root architecture; vascular tissue; the ovule habit; fertilization processes; and pollination biology. Lab Materials Fee: $25; Lab Manual Fee: $25.

Location: St. George

EEB1420H: Special Topics in Ecology: Models in Ecology, Epidemiology, & ConservationNext Offered: TBA

Instructor(s): P. Molnar

Course Description: Modelling is a critical tool used to address urgent resource management questions in ecology, epidemiology and conservation. This practical introduction includes approaches for modelling individuals, populations, species interactions, and communities. Applications include population viability assessments, disease eradication and climate change mitigation.

Location: Scarborough

EEB1421H: Ecology & Evolution of Plant-Animal InteractionsNext Offered: Winter 2021

Instructor(s): M. Frederickson

Course Description: Major concepts in ecology and evolution from the perspective of plant-animal interactions. The richness of interactions between plants and animals is explored including antagonistic interactions (e.g., herbivory, carnivorous plants), mutualistic interactions (e.g. pollination, seed dispersal, ant-plant associations), and interactions involving multiple species across trophic levels.

Location: St. George

EEB1430H: Modelling in Ecology & Evolutionary BiologyNext Offered: TBA

Instructor(s): B. Gilbert, M. Krkosek

Course Description: The study of ecology and evolution uses models to explain biological phenomena including the maintenance of biodiversity, population growth, competition, eco-evolutionary dynamics, trait and molecular evolution, epidemiology, spatial ecology, phylogeny and extinction. Students will learn to develop, assess and apply analytical, simulation and statistical models for analysis and data interpretation. Note that an undergrad course in calculus and an undergrad course in ecology or evolution are recommended.

Location: St. George

EEB1440H: Special Topics in Evolution: GenomicsNext Offered: TBA

Instructor(s): R. Ness

Course Description: The genome has been referred to as the blueprint of life and consists of the full complement of genes and genetic material carried by an organism. The ongoing revolution in DNA sequencing allows biologists to observe the variety of genetic and genomic structures that underpin the diversity of life. In addition, applications of genomic technologies have facilitated new fields of research such as personalized medicine and evolutionary genomics. The lectures will focus on the diversity of genomic structures, their functions and evolutionary origins. The course also has computer-based practicals that provide hands-on training with cutting-edge bioinformatic tools for analysis of genome-scale datasets and next generation sequencing data. A working knowledge of Python is a pre-requisite.

Location: Mississauga

EEB1443H: Phylogenetic PrinciplesNext Offered: Winter 2021

Instructor(s): S. Stefanovic

Course Description: Lectures will provide an in-depth coverage of modern methods of phylogenetic reconstruction including molecular systematics based on DNA sequences. The principles and philosophy of classification will be taught with an emphasis on ’tree-thinking’, one of the most important conceptual advances in evolutionary biology. Tutorials will focus on recent developments in the study of evolutionary patterns while gaining proficiency in reading, presenting, and critiquing scientific papers. Shuttle Bus (Hart House to/from UTM) stop is right in front of this building (IB).

Location: Mississauga

EEB1459H: Theoretical Population GeneticsNext Offered: Winter 2021

Instructor(s): A. Agrawal

Course Description: A focus on theoretical population genetics, using mathematical models to understand how different evolutionary forces drive allele frequency change. Students learn how to mathematically derive classic results in population genetics. Topics include drift, coalescence, the relationship between population and quantitative genetics, selection in finite populations, and mutation load. Offered in alternate years. Recommended Preparation: an intro course to genetics and a solid understanding of basic algebra and calculus.

Location: St. George
Date & Time: Mon. 10:00am-12:00pm & Wed. 11:00am-12:00pm

EEB1460H: Molecular Evolution & GenomicsNext Offered: TBA

Instructor(s): D. Irwin, B. Chang

Course Description: Processes of evolution at the molecular level, and the analysis of molecular data. Gene structure, neutrality, nucleotide sequence evolution, sequence evolution, sequence alignment, phylogeny construction, gene families, transposition.

Location: St. George

EEB1462H: Phylogenetic SystematicsNext Offered: Winter 2021

Instructor(s): S. Kvist, S. Claramunt

Course Description: The Tree of Life metaphor for evolutionary relationships among species, phylogenies, is now fundamental in biology. Phylogenetic trees are now used both in species classification and to investigate myriad biological hypotheses about the evolutionary process and applied problems like virus and cancer epidemiology. This course will train students in the concepts and core methods of phylogenetic tree inference, including parsimony, likelihood, and Bayesian techniques. Students will gain bioinformatics skills with application to DNA sequence analysis and phylogenetic tree inference. Through a combination of lectures, discussion, and computer labs, students will master theory and practice of phylogenetic tree construction and inference. 

Location: St. George
Date & Time: Tues. 10:00am-2:00pm & Wed. 2:00pm-5:00pm

Non-EEB Options

U of T courses

To enrol you will need permission from your supervisor, supervisory committee members and (sometimes) the department offering the course. If you can’t add through ACORN, please complete an ‘Add Course’ form, available from

If you are interested in taking a course(s) for credit outside of U of T, scroll to the bottom.

EES3000H: Applied Conservation BiologyNext Offered: Winter 2021

Instructor(s): N. Mandrak

Course Description: Canada has a complex conservation landscape. Through lectures and interactive discussions with leading Canadian conservation practitioners, this course will examine how conservation theory is put into practice in Canada from our international obligations to federal and provincial legislation and policies, and the role of environmental non-government organizations.

Location: Online

EES3113H S: Topics in Population & Community EcologyNext Offered Winter 2021

Instructor(s): TBA

Course Description: The field of ecology is rapidly changing and this course will cover recent advances, concepts or controversies in ecology. This course will focus on specific scientific issues using current literature and the learning experience will be augmented by student presentations and discussions. The course will help ensure that students become familiar with current understanding and basic ecological concepts.  This will be an elective course, and will be especially attractive to those students who did not take advanced ecology courses during their undergraduate studies.

Location: Scarborough

GGR1916H: Remote Sensing of Vegetation Traits and Function

This course is offered in conjunction with GGR414H Advanced Remote Sensing. Building on GGR337H1 Environmental Remote Sensing (also offered as a graduate course GGR1911H), which covers the basic theories and techniques of optical and microwave remote sensing of the land surface, GGR1916H introduces advanced theories and techniques for land cover mapping, retrieval of vegetation structural and physiological traits, and remote sensing of vegetation light use efficiency and photosynthetic capacity. Diagnostic ecosystem models will also be introduced for terrestrial water and carbon cycle estimation using remote sensing data. Optical instruments for measuring vegetation structural parameters in the field will be demonstrated, and high-resolution remote sensing images acquired from a drone system will be used as part of the teaching material and lab assignments. For GGR1916H additional lectures will be offered on basic radiative transfer theories as applied to remote sensing of vegetation traits and function. Exclusion: GGR414H. GGR1916H Course Syllabus Fall 2019

Cell & Systems Biology

CSB offers some courses that EEB grad students have taken in previous years (e.g. Introduction to R for Data Science, Fundamentals of Genomic Data Science, Bioinformatics). Nick Provart maybe offering his well-reviewed (by EEB grad students) Data Visualization course. Visit theCSB webpage for course offerings. 

Note: CSB students may be given priority for signing up for these courses. If you have not been able to enrol by Sept. 2nd, contact Helen Rodd.

MMG1012H Y: Molecular Genetics

Course Description: Students must take 2 course topics by the end of their second year in order to complete this course. The mark in this course is the average of the two marks obtained in the topics taken. Topics include: A Practical Course in Programming for Biologists; Background and Topics in Molecular Genetics, Functional Genomics, and Computational Biology. Learn more

PSY5110H S: Neurobiology of Social Behaviour

Instructor(s): M. Holmes

Course Description: This course will focus on the development and adult organization of neurobiological mechanisms underlying the perception of social information and production of social behaviours in diverse species. Each week will focus on a unique topic (e.g., eusociality in hymenoptera; pair bonding in voles; face perception in humans; etc)incorporating a mix of lecture, primary literature, and group discussion. 

PSY5121H F: Advanced Topics in Animal Behaviour and Motivation II – Animal Behaviour Genetics

PHY2709H: Quantitative Biology of Systems, Organisms, & Populations

Course Description: This course focuses on the collective behavior of cellular populations coordinated and regulated by intra- and inter-cellular genetic and signaling pathways. We will introduce the mathematical tools to model such non-linear processes, both in a deterministic as well as stochastic framework. Topics cover biological case studies such as microbial population dynamics, the mammalian immune response, disease epidemics, cell differentiation, development and morphogenesis, and the behavior of neuronal assemblies

Mathematical Modelling

Instructor(s): A. Stinchcombe

Course Description: An undergrad/grad joint course. View draft syllabus. The prerequisites are MAT223H1and MAT244H1 with a recommendation of a probability course.

Note: if you are interested in taking this course, speak to Helen Rodd about what the course code would be. 

MSC1090H: Introduction to Computational Biostatistics with R

This course was sponsored by the Institute of Medical Sciences (IMS) in previous years, and if offered this year may have a few spots open for students “external” to IMS. These spots are very limited, and therefore anyone interested in this course should register via ACORN as soon as possible.

Note: for a review of this course, contact Helen Rodd to get in touch with EEB students who have taken it in the past 

BCH1441: Bioinformatics

Course Description: Here is a list of topics/exercises that are covered most in depth to help students decide if it is right for them: 

  • Searching for and down loading data from a bunch of genome, protein and molecular databases; 
  • Analyzing molecular and genomic data in R; 
  • Generating protein models from molecular data;  
  • Protein function analyses (as you can tell there is a lot of bioinformatics as it relates to proteins); 
  • a couple of lectures on phylogenetics, but this topic is not covered extensively

Other bioinformatics courses offered at the University of Toronto: JTB 2020H, CSB4271H, CSB474H1S, MSB 4174

SciNet Courses in R, Python, etc.

Note, for courses given directly by Scinet without a course code, please contact the EEB grad office in late August for information on how to: (1) register with Scinet, and (2) sign up for Scinet courses using EEB course codes.  We do not yet have information about what courses Scinet will be offering this year. Please check for updates. 

CSB1020H F: Introduction to RNext Offered: Fall 2020

This is a beginner’s introduction to R and R-Studio for individuals with no prior experience or background. Individuals who complete the course will be able to: work in the R-Studio environment; understand data structures and data types; import data into R and manipulate data frames; transform ‘messy’ datasets into ‘tidy’ datasets; make exploratory plots as well as publication-quality graphics; use flow control; use string manipulation to clean data; and perform basic statistical tests and run a regression model. Each class will consist of a short introductory lecture followed by ‘code-along’ hands-on learning. Students are expected to have access to a computer during class. The course will be provided through Quercus using Bb-collaborate.

CSB1020H F: Fundamentals of Genomic Data ScienceNext Offered: Fall 2020

This course is designed to serve as an introduction to genomic data science for students who do not have a background in bioinformatics. Students in the course will learn to perform basic genomic data analyses using both Galaxy (a web-based platform that incorporates multiple bioinformatics tools into an easy to use GUI) and the Unix environment. During the course, students will learn how to: use Galaxy and command line tools to process and manipulate data; use of the Integrative Genomics Viewer to visualize genomes; work in a Unix terminal; install bioinformatics software; connect and work on remote servers; understand common genomics file formats; and perform de novo genome assemblies, reference-based genome assemblies, genome annotation, variant calling, and RNA-seq data analysis. Each class will consist of a short introductory lecture followed by ‘code-along’ hands-on learning. Students are expected to have access to a computer during class. The course will be provided through Quercus using Bb-collaborate.

CSB1021H F: Introduction to PythonNext Offered: Fall 2020

This is a beginner’s introduction to Python for data science applications. The course is intended for students with no computer science background who want to develop the skills needed to analyze their own data. Students who complete this course will be able to: perform data analysis in Python using the Jupyter Lab environment; understand data structures and data types; import data into Python and manipulate Python objects such as list, data frames, and dictionaries; transform ‘messy’ datasets into ‘tidy’ datasets; make exploratory plots; and use flow control and use string manipulation to clean data. The structure of the class is ‘code-along’ and students are expected to have access to a computer during class. The course will be provided through Quercus using Bb-collaborate. 

STA2080H: Fundamentals of Statistical Genetics

Course Description: Statistical analysis of genetic data is an important emerging research area with direct impact on population health. This course provides an introduction to the concepts and fundamentals of statistical genetics, including current research directions. The course includes lectures and hands-on experience with R programming and state-of-the-art statistical genetics software packages.

Advanced Topics in Statistical GeneticsNext Offered: TBA

Course Description: After providing students the basics in STA 2080-Fundamentals of Statistical Genetics, this research oriented course will introduce advanced topics to students who are interested in pursuing a career in genome data science.  The specific topics will evolve, over the years, depending on the latest analytic needs and scientific developments from the genetic community. Topics might include set-based statistical analyses for joint analyzing multiple genetic factors (i.e. gene-based), multiple genes(i.e. pathway), multiple outcomes (i.e. pleiotropy), multiple studies (i.e. meta),data-integration analyses for integrating all kinds of ‘omic’ data, and selective inference for conducting reproducible research.

STA2600H F: Teaching and Learning of Statistics in Higher Education

Course Description: This course provides an introduction to a scholarly approach to teaching statistics in higher education. Emphasis is placed on the use of statistics education research, effective communication of fundamental statistical concepts typically encountered in introductory statistics, alignment of learning outcomes, course activities and assessments, recognition of common misconceptions and how to address them, and effective integration of educational and statistical technologies. No prior teaching experience is necessary.   

STA4372H: Foundations of Statistical Inference

Course Description: This course will cover the main approaches to developing a theory of statistical inference. A central theme of the course is a discussion of the reasons why no particular theory has obtained anything near universal acceptance and what the implications of this are for the subject of statistics. Pure likelihood theory, optimality-based frequentitist and Bayesian theories, fiducial inference as well as more qualitative approaches, such as the usage of p-values, are all considered. The desiderata for an ideal theory are discussed and whether or not it is possible for a theory satisfying all such criteria can be obtained. Evaluation will be based on assignments and a project. The overall aim of the course is to inculcate a critical attitude towards the consumption and development of statistical methodology. 

STA4515H: Multiple Hypothesis Testing and its Applications

Course Description: A central issue in many current big-data scientific studies is how to assess statistical significance while taking into account the inherent large-scale multiple hypothesis testing. This 6-week graduate course will first go over the fundamental elements of single and multiple hypothesis testing, then it will move on to more advanced topics such as incorporating prior information to improve power, specific applications to whole genome genetic association studies, as well as discussions of the fallacy of p-value and alternative measures of statistical evidence and significance. Both analytical and empirical arguments will be presented, and participating students are expected to write a research report on suggested or self-selected topics related to multiple hypothesis testing.

STA4523H: Bayesian Computation with Massive Data and Intractable Likelihoods

Course Description: A Google search with the terms “Markov chain Monte Carlo (MCMC)” returns over 2 million hits. This is not surprising, as this class of algorithms has become in the last 30 years the main workhorse for statistical computation, especially for Bayesian inference. However, the evolution of scientific experiments, particularly the availability of large data and the complexity of posited models have brought MCMC to an inflection point. Significant difficulties are encountered when the data is massive or when the statistical model is complex enough to be analytically intractable. In the former case, the classical MCMC samplers scale poorly while in the latter only approximate versions of the model can be studied with little, or no theoretical guarantees of accuracy. In this course we will discuss and study computational algorithms that overcome this type of challenges.

STA4525H S: Demographic Methods

Course Description: This quarter-credit (0.25 FCE) course provides an overview of the core areas of demography (fertility, mortality and migration) and the techniques to model such processes. The course will cover life table analysis, measures of fertility and nuptiality, mortality and migration models, and statistical methods commonly used in demography, such as Poisson regression, survival analysis, and Bayesian hierarchical models. The goal of the course is to equip students with a range of demographic techniques to use in their own research.

CHL5223: Applied Bayesian Methods

Instructor(s): M. Escobar (Public Health)

CHL5425H: Mathematical Epidemiology of Communicable DiseasesNext Offered: Fall 2020

Instructor(s): D. Fishman (Public Health)

Location: Online

THE500: Teaching in Higher Education

Instructor(s): TBA

Course Description: A graduate-level/postdoc course in which students read recent literature on pedagogical theory, and participate in exercises and group discussions on how to apply that theory to the university classroom. TBA. May be offered Winter 2020. See website for additional information. This course is also available to postdocs.

Note: This course is for professional skills development—you will not receive course credit for this course

Faculty of Information

The Faculty of Information offers graduate courses in topics including: Introduction to Statistics for Data Science, Data Analytics: Introduction, Methods, Practical Approaches. View courses here.

Additional Graduate Course Options

With the professor’s permission, students are welcome to sit in on undergraduate courses to enhance their background in specialized topics.

Students may also continue to audit, or take for credit, graduate courses even after they have completed the course requirements for their degree.

If you identify a need for a course on a particular subject that is not currently covered by available courses, please notify the graduate department and/or faculty. If student demand is high enough, it may be offered as a new Special Topics course the following year.

Non U of T Course Options

To get credit for course(s) taken at another institution, the course must be: a graduate course with a correlating course code.  The syllabus must be approved by EEB Grad Coordinator, Helen Rodd and the supervisory committee.  After the course is completed, EEB will send the graded transcript and syllabus to SGS for approval.  

Student-run Workshops

To encourage the sharing of research expertise amongst graduate students, EEB may offer financial support to students or student groups who offer their own not-for-credit workshops or short courses that meet significant demand for skills or knowledge beyond what is already available within the department.

Propose a Course

Prospective student instructors or organizing groups should submit to the Graduate Office a proposal that: 

  1. describes the need and the project designed to fill it, including giving it a descriptive name
  2. assesses the demand within the department and specifies a measure of success for the project (e.g. the number of students completing the training)
  3. optional: describes a small budget (maximum $500) for supplies, course resources, and/or a small honorarium for the chief instructor;
  4. provides a list of fewer than 10 questions that would constitute a suitable evaluation of the quality or success of the project in meeting student needs.

The Grad Office will respond with a decision about the level of support, which may be contingent on the project meeting its specified index of success. If the project is a success, we will also provide a letter of documentation to students who led the project.